Question: Does the zero vector have no basis? Justify . Construct the real polynomial degree at most 2 whose graph contaions the point (−4,24),(1,9) and (3,3) sketch the graph.
Solution:
First Part:
No,empty set the basis for zero vector.
Second part:
Here c0=−4,c1=1,c2=3 and b0=24,b1=9,b2=3
Here degree is at most 2 ,so n = 2
Now we find
F0(x)=∏2(k=0,k≠0)
F0(x)=x−ckc0−ck\
=(x−c1)(x−c2)(c0−c1)(c0−c1)
= (x−1)(x−3)(−4−1)(−4−3)
=x2−4x+335
F1(x) = ∏2(k=0,k≠1)(x−ck)(c1−ck)
= (x−co)(x−c2)(c1−c0)(c1−c2)
= (x+4)(x−3)(1+4)(1−3)
=(x2+x−12)−10
F2(x)=∏2(k=0,k≠2)x−ckc2−ck
=(x+4)(x−1)(3+4)(3−1)
=(x2+3x−4)14
Hence the require polynomial is
F(x)=∑2(i=0)bifi(x)=b0F0(x)+b1f1(x)+b2f2(x)
F(x)=24(x2−4x+3)35+9(x2+x−12)(−10)+3(x2+3x−4)14
Comments