Question: Does the zero vector have no basis? Justify . Construct the real polynomial degree at most 2 whose graph contaions the point (4,24),(1,9) and (3,3) sketch the graph.

Solution:
First Part:
No,empty set the basis for zero vector.
Second part:
Here c0=4,c1=1,c2=3 and b0=24,b1=9,b2=3
Here degree is at most 2 ,so n = 2
Now we find
F0(x)=2(k=0,k0)
F0(x)=xckc0ck\ =(xc1)(xc2)(c0c1)(c0c1)
= (x1)(x3)(41)(43)
=x24x+335
F1(x) = 2(k=0,k1)(xck)(c1ck)
= (xco)(xc2)(c1c0)(c1c2)
= (x+4)(x3)(1+4)(13)
=(x2+x12)10
F2(x)=2(k=0,k2)xckc2ck
=(x+4)(x1)(3+4)(31)
=(x2+3x4)14
Hence the require polynomial is
F(x)=2(i=0)bifi(x)=b0F0(x)+b1f1(x)+b2f2(x)
F(x)=24(x24x+3)35+9(x2+x12)(10)+3(x2+3x4)14

F(x)=48(x24x+3)63(x3+x12)+15(x2+3x4)70or, F(x)=48x2192x+14463x263x+756+15x2+45x6070or, F(x)=45x255x+9006070or, F(x)=(210+840)70or, F(x)=3x+12

image

Comments